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In polycrystalline films where three types of scattering processes (background, grain- 
boundaries and external surfaces scatterings) are taking place at the same time an effective 
relaxation time is defined in the light of a three-dimensional model of grain-boundaries. 
Analytical expressions for the Hall coefficient and conductivity in thin polycrystalline 
metallic films subjected to a transverse magnetic field are then derived by using the 
Boltzmann transport equation. Previously published data can be theoretically interpreted 
in terms of the proposed model. 

1. I n t r o d u c t i o n  
The effect of external surfaces on the Hall coef- 
ficient, RHF, of thin metal films subjected to a 
transverse magnetic field has been studied by 
many investigators [1-11].  Measurements on 
polycrystalline or monocrystalline thin films have 
also been reported in the past few years [1, 2, 5, 
7-10] .  However, to our knowledge, there are at 
present no theoretical calculations of the conduc- 
tivity and the Hall coefficient for a thin poly- 
crystalline film placed in a transverse magnetic 
field in which three types of electron scattering 
mechanisms are simultaneously operative: i.e. 
isotropic background scattering due to phonons 
and point defects, grain-boundary scattering and 
external surface scattering. 

Let us recall that Mayadas and Shatzkes (M-S) 
[12] have proposed a conduction model for poly- 
crystalline films of constant grain size in the 
absence of a magnetic field. However, this model is 
inadequate to describe the transport phenomena in 
the presence of a transverse magnetic field because 
it assumes that only the grain-boundaries perpen- 
dicular to the applied electric field must be con- 
sidered in the calculations [12], thus, the M-S 
model is in practice a one-dimensional model. For 
this purpose a previous work [13] has been 

the electron scattering both on external surfaces 
and on grain-boundaries; the grain-boundaries are 
represented by three series of potentials respect- 
ively oriented perpendicular to the x-, y- and 
z-axis. 

In this paper an attempt is made to derive 
analytical expressions for the Hall coefficient RHF 
and the conductivity OF of polycrystalline t'rims 
whose grains exhibit a cuboid shape by using a 
three-dimensional conduction model [13] and by 
solving t h e  Boltzmann equation determined in a 
mean free path method [14-16] under the 
application of a transverse magnetic field. 

devoted to theoretical electrical resistivity, due to for the geometry of Fig. 1. 
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2. Theory 
2.1. The effective relaxation time 
In the absence of a magnetic field the transport 
properties of a thin polycrystalline film may be 
treated to a good approximation by a simple 
model [13] which states that in the case of nearly 
specular scattering on external surfaces (p >__0.5) 
an effective mean free path, /elf, may be defined 
which is given by 
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Figure 1 Geometry of the model; (a) the grain model and (b) the velocity co-ordinates. 
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Thus, the effective relaxation time, Teff, which 
describes the effects of simultaneous background, 
grain-boundaires and external surfaces scatterings 
can be written as 

t~ [1+c2 
T e f f -  7) P 

+,coso, (l 
-1 

(2) 

10 and v are respectively the background mean 
free path and electron velocity, c is a constant 
equal to 4/1r, u and p are related to the grain size 
ag, transmission coefficient t through grain- 
boundaries, film thickness a, specularity parameter 
p and mean free path lo by Equations 3 and 4 
below. 

ag - (3) 

a 
P -  ( 1 ) "  (4) 

lo- In 

2.2. Solvin9 the  Bol tzmann  equa t ion  
Let us consider a polycrystalline film with surfaces 
parallel to the (x, y)  plane subjected to an electric 
field (E~, Ey, 0) in the plane of the film and to a 
transverse magnetic field (0, 0, H)  (Fig. 1); follow- 
ing the lines of previous approaches [14-16],  the 
appropriate Boltzmann equation can be written in 
the form 
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= e ( E  ~ f ~  a f ~  (5) 
m x Ov x Ov~] 

where fo is the Fermi function and fa is the devi- 
ation of electron distribution f; - e, v= and vy are 
respectively the electronic charge and the x- andy- 
components of the velocity v. 

In order to solve the Boltzmann equation we 
can put [14, 17] 

f l  = (VxCa + rye2) 3fo (6) 

where c 1 and c2 do not depend explicitly on v= 
and vy and the usual complex quantities are intro- 
duced [17]: 

g = ca-- (ie2), (7) 

F = E x -- (iEy). (8) 

Equation 5 then becomes 

g v e 
- - + i - - g  = - - F .  (9) 
Tel f r m v  

Note that on the one hand the form of the 
effective mean free path (Equation 1)indicates 
that the assumption made about ca and c2 are 
reasonable and that on the other hand the above 
analysis supposes that [(1 - - c ) -  u -a] + p-1 is not 
equal to zero. 

The analysis involves a new quantity, r, namely 
the radius of a free electron orbit in a magnetic 



field 

my 
r - ell" (10) 

Introducing the parameter a = lo" r-~ we then 
fired for the general solution of Equation 6 that 

The electrical conductivity OF of the poly- 
crystalline Film could be calculated according to 
the usual definition [17, 18] 

O F -- .,,=0. (21) 

e ' lo  x{ [Ex(~+ b l c ~  + blc~ 
g - mv 2 [~+blcosOI]2+a 2 (11) 

with 
/3 = 1 + c 2' v -x (12) 

and 
b = # - l + p - " ( 1 - - c ) .  (13) 

2.3. The electrical conductivi ty 
Introducing the polar co-ordinates (v, 0, 40 where 
Vz= v ' c o s 0 ,  we can at once write down the 
expressions for the total current densities in the 
x- and y-directions: 

J~ = 2e 

and 

~ = 2 e  

h )  2 ~" V4 fo cos2qSdq~fo cl sinaOdO 

(14) 

s: v 4 sin 2 ~ d~ c2 sin 3 0 dO. 

(15) 
Integration over 0 gives 

:x = ~ o o ( A ' E x - - a B ' E y )  (16) 
and 

J, = ~2oo(A'Ey+aB'E=) (17) 
with 

1{ 1+15 

b 

+ 2b 2 in + ~2-+ fl--5- }j 

[-s arctan ba ]} (18) 
L ~  ~2 + ~(t~ + a) 

B = ~ --~- + ~ l n  + a---2+/3- 3- ]] 

ab 2 arctang a2 +/3(/3 + b) " 

(19) 

Oo is the background conductivity which is  
expressed as 

ne21o 
cr o - (20) 

my 

This yields 

OF 3 A 2 + a2B 2 
Oo 2 A , bye0. (22) 

2.4. The Hall coefficient, R H F 

The Hall coefficient of a thin film is defined by 
[17, 18] 

/f'~ J,=o RHF = (23) 

Previous equations then give 

RHF = - - ~  oo.H.(A2+o~2B2 , b=/=O. 

(24) 
It is well-known that in the free-electron model 
the Hall coefficient Rno of the bulk metal is 
related to the number, n, of free-electrons by the 
following relation [3, 14, 17, 19]: 

RHO = -- 1/ne. (25) 

The ratio RHF/RHo of the Hall coefficient of thin 
polycrystalline films to that of the bulk material 
may be written in the final form, 

b4:0.  

(26) 

2.5. The particular case, b = 0 
For thin polycrystalline films of thickness as such 
as 

p = u" [c--  1] -1 (27) 

the expressions of the current densities reduce to 

Jx = ~Oo fo r/3E= --aEy /32 + a2 sin30 dO (28) 

Jy = ]ao f ~ (JEy + aE x o ~2 +82 sin 30 dO. (29) 

and 

453 



Hence 
OF/O0= r - l ,  b = 0; (30) 

RHF[RHo = 1, b = 0. (31) 

3. Discussion 
Numerical values of the ratio RHF/RHo and 
OF/a0 may now be easily evaluated for different 
values of the parameters v,/.t and a with the aid of 
a pocket calculator. 

3.1.  The  film conduc t iv i t y  
A further paper will report detailed results on the 
variations of the polycrystalline f'flm conductivity 
and magnetoresistance with the physical param- 
eters u, /.t and a. However, let us note that the 
theoretical plots of aF/ao against /.t for ~ = 0.1 
and for various values of u (Fig. 2) show that the 
values of the ratio OF/Oo markedly depend on the 
grain parameter u. 

3.2. The  Hall coe f f i c i en t  
First of all the limiting cases are examined where 
the effect of external surfaces (totally specular 
scattering or film of infinite thickness, a) or the 
effect of grain-boundaries (perfect transmission 
through grain-boundaries or grain of infinite size) 
can be neglected. 

In the first case (#-+ oo), Equation 13 suggests 
that the problem is now formally identical to the 
problem (solved in a previous paper [20]) of a 
polycrystalline film in which only the background 
and grain.boundary scatterings are taken into 
account. 

In the second ease (v -~ oo) Equations 18 and 19 
may be written in the limiting forms 

and 

1 

+ l ( a 2 / ~ 2 - - / ~ 2 + l ) l n (  a 2 + ( l + u - ' ) 2 ] ( l  + a2) 

a } (32) - -  2a/~2 arctan #(a2 + 1 +/a -L) 

_,),l 

+ a2U2 2+ 1 arctan/~( a2+ 1 + / i  1) " 

(33) 

It ensures that in the absence of grain-boundary 
scattering effects, Equation 26 for the Hall coef- 
ficient reduces to that of a thin film which 
exhibits only the well-known Fuchs-Sondheimer 
size effect as previously derived [14]. 

Fig. 3 shows variations in the Hall coefficient 
ratio RHF]RHo plotted against reduced thickness 
k (k = a/lo) for different values of the a parameter 
and for a given value of the grain parameter 
(v = 1) and specularity parameter (p = 0.75) 
while those of Fig. 4 show RHF/RHo as a function 
of k for five given values of v and for a value of 
( a =  0.1) which corresponds to magnetic field 
magnitudes that are obtainable in practice [21]. 

In Fig. 5, plots of the ratio RHF/RHo against k 
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Figure 2 Variations in the con- 
ductivity ratio OF/O 0 with # 
(for c~--0.1) under the influ- 
ence of the grain parameter, u. 
For curves A, B, C and D, v = 
0.1, 0.4, 1 and 4 respectively. 
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Figure 3 Variations in the Hall coefficient ratio RHF/RHo 
with the reduced thickness k (for p = 0.75 and v = 1) 
under the influence of the magnetic field, H. For curves 
A, B, C and D, c~ = 0.01, 1, 4 and 10 respectively. 

are shown for various values of  the specularity 
parameter p and for e = 0.4 and u = 1. 

Figs 3, 4 and 5 exhibit  several features. 
(a) For given values of  e and u, the curves have 

the usual aspects of the Sondheimer curves [17]. 
In particular it is noted that the physical require- 

ment  which states that RnF/RHo must decrease 
with increasing values of  k and p is satisfied. 

(b) For given values o f p  and ~ the variations in 
RHF/RHo with thickness markedly depend on the 

parameter. As the grain-boundary scattering 

effect becomes more significant, the ratio RHF/ 
RHO tends to become insensitive to the reduced 
thickness variations at smaller thicknesses. 

(c) In the limit of  infinitely thick polycrystal- 
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Figure 5 Variations in the Hall coefficient ratio R HF/RHo 
with the reduced thickness, k (for a = 0.4 and u = 1) 
under the influence of the specularity parameter, p. For 
curves A, B and C, p = 0.9, 0.75 and 0.5 respectively. 

line films and contrary to the electrical conduc- 
tivity the ratio RHF/RRO is almost equal to unity. 
Hence, for polycrystaUine films in which no size 
effects due to the geometrical l imitation of  the 
mean free path by the external surfaces occur, 
the changes of  the Hall coefficient with the g a i n  

parameters (ag, t) are negligible. 
(d) For given values of  k, p and u the Hall 

coefficient ratio R~F/RHo increases (Fig. 5) with 
decreasing values of  the c~ parameter,  i.e. with 
decreasing values of  the strength of  the magnetic 
field. A similar feature has been observed by Li 
and Marsocci [22] and by Feder and Jossange 
[23] who have theoretically studied the variations 
of  the Hall coefficient with the magnetic field 
strength using the framework of Sondheimer's 
theory [17]. 
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Figure 4 Variations in the Hall coefficient ratio RHF/RHo 
with the reduced thickness, k (for p = 0.75 and ~x = 0.1) 
under the influence of the grain parameter, v. For curves 
A, B, C and D, v = 0.1, 0.4, 1 and 4 respectively. 

3.3. Comparison with experiments 
Experiments [5, 8] on the thickness dependence 
of  the Hall coefficient on thin polycrystalline fihns 
allow us to compare the observed results with the 
predictions of  the proposed theory. 

Simultaneous measurements o f  the film resis- 
tivity and Hall coefficient of  polycrystall ine 
copper films have been performed by Suri et al. 
[5] ; it was observed that for thicker films, on the 
one hand that the limiting value of  RH= of  the 

Hall coefficient (R~I= ~ 5.5 x 10 -s cm 3 C -1) does 

not significantly depart  from the bulk value 
(RHo ~ 5 x 10 -s cm 3C -1, [21]) and on the other 

hand that the deviation from the bulk value Po of  
the resistivity p= of  an infinitely copper film is 
more marked and depends on the deposit ion and 
annealing conditions [5]. For example,  unannealed 
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copper f'tlms exhibit deviations of about 60% for 
the resistivity and 7% for the Hall coefficient 
whereas departures of about 10% for the resistivity 
and 7% for the Hall coefficient are observed in the 
case of copper films annealed at 250 ~ C. 

Kinbara and Ueki [8] have reported similar 
results: for thick copper films RHF was found to 
take a constant value of 6 x 10 -s cm 3 C -1 whereas 
the resistivity, p~, was found to be considerably 
larger (p= ~--3/a~2cm) than the bulk resistivity 
(P0 ~" 1.72/z~2 cm [24]). 

These results may easily be understood both 
qualitatively and quantitatively in terms of the 
present theory [ Section 3.2 (c)]. It is reasonable to 
attribute the changes of p,~ with annealing and 
deposition conditions to quantitative variations 
of grains, since it is well-known [25-32]  that 
annealing induces a subsequent growth of grains; 
hence, from Equation 7, 12 and 13, the role 
played by the grains in determining p= becomes 
less significant. 

4. Conclusion 
The three-dimensional model which assumes that 
the scattering effects of grain-boundaries can be 
described by three arrays of partially reflecting 
planes oriented perpendicular to the x-, y- and 
z-axes and that a single relaxation time can be 
defined for each type of scattering (background 
scattering, external surfaces, grain-boundary) can 
be considered as a convenient tool to derive an 
analytical expression for the Hall coefficient in 
thin polycrystalline films subjected to a transverse 
magnetic field. In marked contrast with the elec- 
trical conductivity, the Hall coefficient of suf- 
ficiently thick films is found to be independent of 
the grain parameters. Some experimental data on 
polycrystalline copper films can be easily inter- 
preted in terms of the proposed model. 
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